Statistical Inference for Time - Varying Arch Processes
نویسندگان
چکیده
In this paper the class of ARCH(∞) models is generalized to the nonstationary class of ARCH(∞) models with time-varying coefficients. For fixed time points, a stationary approximation is given leading to the notation “locally stationary ARCH(∞) process.” The asymptotic properties of weighted quasi-likelihood estimators of time-varying ARCH(p) processes (p < ∞) are studied, including asymptotic normality. In particular, the extra bias due to nonstationarity of the process is investigated. Moreover, a Taylor expansion of the nonstationary ARCH process in terms of stationary processes is given and it is proved that the time-varying ARCH process can be written as a time-varying Volterra series.
منابع مشابه
Theis Lange Asymptotic Theory in Financial Time Series Models with Conditional Heteroscedasticity
The present thesis deals with asymptotic analysis of financial time series models with conditional heteroscedasticity. It is well-established within financial econometrics that most financial time series data exhibit time varying conditional volatility, as well as other types of non-linearities. Reflecting this, all four essays of this thesis consider models allowing for time varying conditiona...
متن کاملExact Statistical Inference for Some Parametric Nonhomogeneous Poisson Processes
Nonhomogeneous Poisson processes (NHPPs) are often used to model recurrent events, and there is thus a need to check model fit for such models. We study the problem of obtaining exact goodness-of-fit tests for certain parametric NHPPs, using a method based on Monte Carlo simulation conditional on sufficient statistics. A closely related way of obtaining exact confidence intervals in parametri...
متن کاملTesting Temporal Constancy of the Spectral Structure of a Time Series
Statistical inference for stochastic processes with time varying spectral characteristics has received considerable attention during the last decades. We develop a nonparametric test for stationarity against the alternative of a smoothly time-varying spectral structure. The test is based on a comparison between the sample spectral density calculated locally on a moving window of data and a glob...
متن کاملOnline Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کاملState-space multitaper time-frequency analysis
Time series are an important data class that includes recordings ranging from radio emissions, seismic activity, global positioning data, and stock prices to EEG measurements, vital signs, and voice recordings. Rapid growth in sensor and recording technologies is increasing the production of time series data and the importance of rapid, accurate analyses. Time series data are commonly analyzed ...
متن کامل